
iCC 2012 CAN in Automation

13-5

Security aspects in CANopen bootloaders
Christian Keydel, Embedded Systems Academy

One intriguing aspect of networked nodes is the option to allow their firmware to be
remotely updated in the field. Some CANopen Device Profiles have even made this a
requirement. The updating process in the target is handled by a dedicated piece of
firmware, the CANopen bootloader. A failure of the bootloader can have severe
consequences, from necessary power cycles over direct mechanical interaction with
the device up to having to replace the node. For deeply embedded nodes that are out
of reach, for example in deep-sea applications, such a failure can even be
catastrophic. Therefore, in this crucial piece of software, security and reliability of
operation deserves special consideration. Combined with resource constraints
common in bootloaders, these unique requirements ask for a dedicated rather than a
common off-the-shelf CANopen implementation. This paper discusses the security
aspects of such an implementation in regards to software engineering, safe coding
practices and operation flow.

While every application is different in
terms of what levels of reliability and
security are deemed sufficient in a
bootloader, this paper will attempt to
discuss these aspects in a manner that
should apply to a great number of fields.
We’ll start with some basic principles on
the design of a bootloader.

The bootloader always executes first

No application should ever be able to
interfere with the bootloading functionality
since it is also a rescue mechanism.
Therefore, after a reset of any kind, first
the bootloader must gain control of the
microcontroller to determine what it has to
do. This means that the reset vector in the
microcontroller must point to the entry
address of the bootloader at all times. In
devices where the reset and interrupt
vectors are at fixed address location in
flash memory, this imposes a slight
challenge as commonly this region can
only be erased and reprogrammed as a
whole. Since erasing this area would
create a window of insecurity during which
a reset or power failure renders the device
dead-in-the-water (sometimes literally),
this is unacceptable. Instead, all vectors
will have to be preset to fixed, determined
locations.

Interrupt vector mirroring

The application code that the device will
be executing will want to use interrupts, so
we have to establish a method to use
them, even if the actual vectors are fixed.
This is possible by using mirroring, where
the interrupt vectors point to fixed
addresses in the loadable application

Figure 1 – Interrupt Vector Mirroring

area, which in turn contain jump
instructions to the actual interrupt service
routines (ISRs), as shown in Figure 1.

iCC 2012 CAN in Automation

13-6

It should be noted that with
microcontrollers where the vector address
location is programmable, mirroring can be
avoided. The bootloader can use the reset
vector for itself and set the vector base
address to the application’s vectors before
it starts executing it.

No use of interrupts

Unlike the application, it is preferable for a
bootloader not to use interrupts for several
reasons: When vector mirroring has to be
employed, using the hardware vectors for
the bootloader is impossible unless all
vectors point to code that decides which
ISR (the bootloader’s or the application’s)
to execute, which introduces additional
interrupt latency and also a potential point-
of-failure during execution. Secondly, even
when mirroring is not used, interrupt-
triggering events occur asynchronously to
the rest of the code and the execution of
the code is no longer completely
deterministic which for the highest level of
security has to be avoided. Lastly, with
most architectures the microcontroller
cannot execute ISRs during flash
programming which means interrupts have
to be temporarily disabled during
programming sequences. The
mechanisms to accomplish this are not
always absolutely reliable and may create
another potential point-of-failure.1

Using polling

The performance requirements of a
CANopen bootloader are typically very
modest and can be achieved without the
use of interrupts, using loops and polled
events instead. There is very little potential
gain in using interrupts in a bootloader
outside of the ability to re-use standard
drivers taken from regular applications.

Flash programming and security

The ability to re-program the flash memory
area reserved for the application is the
core functionality of a bootloader. It
typically consists of three parts:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 See Philips Semiconductors AN10414 – Handling
of spurious interrupts in the LPC2000, chapter 2, for
an example

• Erase
• Program
• Verify

While the code to verify successful
programming executes only read
accesses and is therefore uncritical, erase
and program alter the flash contents and
can render a device useless if executed
inadvertently. This may happen if an
application or hardware bug, EMI or power
disturbance causes the microcontroller to
execute random addresses. There are
three levels of security against this type of
transient failure causing permanent
damage:

First, the code to erase and program flash
memory should not be scattered
throughout the bootloader but instead be
minimized in size and placed at as few
locations as possible. In some cases, the
code to erase and program looks almost
identical save for some parameters. In this
case, one should take advantage of this
and implement both inside a single
function.

In addition, if a higher level of security is
required, the lowest-level flash
programming code should be guarded by
a flag pattern or “password” at a certain
memory location that only the bootloader
sets after it has started up successfully
and far enough away from the execution
path that forcibly ends up in executing the
programming function. The password will
be destroyed upon application execution.
This helps against inadvertent execution of
the programming code while the
application is running.

For the highest level of security, the
programming code should not exist in the
flash memory at all. Instead, if the
microcontroller architecture allows this, it
should be downloaded into RAM only right
before the application code is to be
programmed and automatically destroyed
afterwards. In a CiA 302 compatible
bootloader, a dedicated entry in the
objects 1F50h (Program data), 1F51h
(Program control) and the other
associated arrays (1F56h etc.) offers a

iCC 2012 CAN in Automation

13-7

convenient interface to implement this.2 It
should be noted, however, that the version
management part of a CANopen manager
application dealing with such a slave node
may need to be customized in order to
support this scheme properly. As an
alternative, the flash programming code
could also be embedded in an application
firmware file so that it is always
downloaded together with the application
code and automatically placed in RAM by
the file parser in the bootloader before the
actual programming starts.

Protection against unauthorized access

It can be very desirable or even necessary
to offer the option to update nodes in the
field to authorized parties only. With
CANopen and CiA 302 being an open
standard, this by default is not guaranteed.
Therefore, a custom write-only object
dictionary entry that unlocks the flash
programming in the software only when
the correct password is written to it, or a
more sophisticated challenge/response
mechanism to prevent eavesdropping the
password may be implemented. This type
of mechanism is

Bootloader overwrite protection

Before a received block of application
code is programmed into flash memory,
the bootloader must check for the block to
stay completely within application flash
area boundaries. Any attempt to program
flash outside these boundaries must be
rejected and an error must be generated,
e.g. via an SDO abort message.

In addition, if the hardware supports it, the
bootloader flash area should be protected
against erase and programming by
activating a flash locking mechanism.
Thereby, even if for whatever reason an
erase or programming cycle is triggered,
the bootloader will always stay functional.

Checksum calculation and verification

Any kind of programmable data, be it the
application code, configuration data in an
EEPROM or the flash programming code
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2 CiA 302 DSP Part 3 Version 4.1.0, not specified in detail but
mentioned in CiA 302-3.2chapter 4.4

that goes into RAM should be
accompanied by a checksum for
verification. While a cyclic-redundancy
check (CRC) is the safest and therefore
recommended method, since the amount
of memory that it has to be calculated over
can be substantial, depending on the
microcontroller performance, a calculation-
based CRC implementation may introduce
a delay that is considered too long. In
cases where a table-based CRC
implementation takes up too much code
space in the bootloader and is therefore
not ideal either, other and more simple
means of checksum calculation, for
example the TCP/IP method, may be used
as well.

Before the bootloader jumps to execute
the application, it should always calculate
the application’s checksum and compare it
with the stored one. If there is a mismatch,
it should never execute the application and
instead stay in the bootloader to allow for
another erase/download cycle.

If non-volatile storage such as an
EEPROM is used to configure parameters
such as the CAN bitrate, the CANopen
Node ID, the serial number etc., a
checksum error should cause the
bootloader to apply safe default values
that will allow recovery under normal
circumstances.

The bootloader may calculate and verify
its own code area checksum as well, even
though the consequences of a mismatch
are much less clear-cut, and application-
specific. It is difficult to think of a scenario
where the detection of a bootloader
checksum error causing the bootloader to
stop executing itself would be the safer
option compared to continuing execution,
but such an error should be detectable to
allow for the node to be replaced when
possible.

There are several options to indicate a
checksum error, from setting some I/O
status over sending a CANopen
Emergency message to adding an error
entry to the Predefined error field at object
1003h, if implemented.

iCC 2012 CAN in Automation

13-8

Resource constraints

The bootloader is recommended to be an
individual, self-contained piece of firmware
that shares no code with the application
and must not depend on it for one obvious
reason: As previously said, a faulty
application should never be able to
interfere with the application maintenance
mechanism. The application functionality
is commonly the main focus of
development since it will be running
almost all the time. The bootloader on the
other side, albeit crucial if needed, will
hardly ever be visible to the end user. The
execution of the bootloader and the
application is mutually exclusive and both
occupy different parts of flash memory.
There is always the pressure to save cost
as well, and to choose the smallest chip
that can perform the task at hand. These
requirements combined mean that the
bootloader should take as little space as
possible and leave the most room for the
application. With some devices there are
even hard limits when a dedicated boot
flash area is used, for example 8 KiB in an
Atmel AT90CAN128.

RAM requirements are less crucial since
all RAM can be used by the bootloader or
the application when the retrospective
code is executing.

Application execution

When the regular application is developed
and tested, this is normally done on its
own and with no bootloader present. A
running bootloader is by itself a complete
application, too, though. It initializes the
microcontroller and uses several of its
peripherals such as timers, CAN
controllers and perhaps other I/O. When
the bootloader has determined that it
should execute the application, a straight
jump would be the fastest approach,
however, now the application starts
executing from a different state than when
it was developed and tested. It has been
found that this approach can cause
applications to fail for subtle reasons that
can be very difficult to track down. They
may also not surface right away but only
after the device has been deployed in the
field and a new application firmware

version has become necessary. For this
reason, it is highly desirable to start the
application from a state that is as close to
the reset state as possible. This can be
achieved by jumping not directly to the
application but setting a keyword pattern
at a certain RAM location or register that is
excluded from startup initialization,

generating a self-reset and at the following
entry to the bootloader code checking this
keyword. If set appropriately, the
bootloader immediately jumps to the
application in a “blank slate” state, before
all peripherals for regular execution are
initialized.

Forced bootloader and backdoor entries

When the device has a regular application
programmed, it is started automatically
after each reset, as long as the checksum
verification passes. To trigger a switch to
the bootloader when the application is
running, for example after object dictionary
entry [1F51h,1] (Program Control) is
written with 00h to “Stop Program,” the
application can write to the same keyword
pattern to signal that a forced bootloader
execution is requested, and generate a
self-reset. When the bootloader executes
first and sees this request, it will not
automatically execute the application after
checksum verification and instead stay in
bootloader mode, waiting for commands.

A distinct challenge rises if the loaded
application passes checksum verification
but is not working properly, e.g. not
communicating on the CANopen bus or
immediately crashing, removing our
method of forced bootloader entry. In this
severe case the only remedy is a
backdoor entry method. If physical access
to the device is possible, this can be an
input pin connected to a button or DIP
switch which is checked after the
bootloader starts up. However, if no
physical access is available, the failsafe
mechanism still possible is an initial
waiting period after reset. This means that
after a regular reset and when not
detecting a specific keyword pattern
request, the bootloader will initialize itself
normally and wait for – specific! –
incoming CANopen messages. If it sees a

iCC 2012 CAN in Automation

13-9

request, which could be an SDO read to
its own Node ID, it will process the request
and stay in bootloader mode. If no specific
communication is seen within a certain
time, the bootloader will execute the
regular start application sequence. The big
advantage of this method is that it makes
the bootloader always accessible after a
power-up reset. The disadvantage is that
regular application startup is always
delayed by the initial waiting time.

In summary, Figure 2 shows an execution
flow example of a secure CANopen
bootloader.

CAN driver implementation

In order to implement the polled CAN
driver for maximum security and reliability,
its initialization should allow as few options
as possible. For the CAN bitrate it should
either use a fixed, hardcoded configuration
or, if there are any configuration options,
should allow selecting between few
defined and tested options such as:

Figure 1 – Example execution flow

• Default CAN bitrate
• Alternative CAN bitrate

If possible, CAN hardware message
filtering should be used to ignore all CAN
traffic that is of no interest to the node and
let only two distinct 11-bit messages pass:

• SDO Request (600h + Node ID)
• NMT message (000h)

For transmissions, since polling is used,
the driver should wait for the transmit
buffer to clear either before or after a
transmission. Multiple transmit buffers, if
available, may be used even though the
conceivable benefits will be minimal.

CANopen implementation

The communication requirements of a
CANopen bootloader are limited and
specific. In addition to a basic NMT state
machine and heartbeat generator, there is
only a small set of object dictionary entries
that has to be implemented in the node,
and for all but one the SDO expedited
communication method is sufficient. The
single exception is object dictionary entry
1F50h (Program data), where its
subentries 1 and higher, if applicable,
contain a DOMAIN type entry for the
application or firmware data. For this type
of entry, the SDO segmented or block
transfer method has to be implemented.
The SDO block transfer may seem like the
more attractive option to transfer larger
amounts of data with greater data
throughput but can be commonly
discarded for this purpose because

• it adds a new requirement to the
bootloader’s polled CAN driver
implementation – to be able to
receive and buffer back-to-back
CAN messages,

• it adds to the RAM and, more
severely, ROM requirements of the
code significantly, and

• SDO segmented access has to be
implemented regardless.

In the majority of cases, the firmware
download will be a relatively rare event,
and therefore a performance optimization
with SDO block transfer will not be

iCC 2012 CAN in Automation

13-10

motivation enough to justify the increased
complexity, limited portability of the code
and added potential points-of-failure.
Therefore, SDO segmented transfer

should be the preferred choice for the
DOMAIN entries.

Many services such as all PDO handling,
SYNC processing, heartbeat and EMCY
consumers are not needed in a CANopen
bootloader.

Remote diagnostics

In deeply embedded nodes, all diagnostics
of a problem in the node will have to
happen via the CANopen network. The
mentioned program data entry in the
object 1F50h array can be readable. This
is optional, but can be useful for
diagnostics to read out the current flash
memory contents of the application area. If
implemented, its access may need to be
guarded with a password against
unauthorized access the same way flash
programming may be.

To allow access to internal error
information, the object 1003h (Predefined
error field) is an obvious choice. It is a
dynamic list which means that the number
of subindexes can change. Subentry 0
always has the current number of
elements in the list to indicate the highest
subindex that can currently be read. After
reset, and if there was no error, subentry 0
contains 00h and the list is empty. The
latest error is added to the top of the list
and the highest available subentry has the
oldest error. The entries are 32-bit values
with the lower 16 bits containing an error
code with many codes already predefined

in CiA 301 and the upper 16 bit holding
freely usable additional information about
the error:

Table 1 – Object 1003h, Subentry 1 and up –
Standard error field

A possible assignment for bootloader use
is suggested below:

Bits
15..0
Error
Code

Meaning
Bits 32..16
Additional
Information

0x6100
Internal Software
Error: Bootloader
checksum wrong

Calculated
checksum

0x6200
User Software
Error: Application
checksum wrong

Calculated
checksum

0x6300
Data Set Error:
EEPROM
checksum wrong

High byte:
Calculated
checksum byte
Low byte: Read
checksum byte

Table 2 – Example standard error field entries

Certification

The requirement for some classes of
devices to pass certification can impose a
challenge to many standard CANopen
implementations in the C language, even
though the detailed requirements vary
widely depending on the standard the
code has to adhere to. Since the author
has assisted in certification of CANopen
bootloader code according to Subsea
Instrumentation Interface Standardisation
(SIIS) where in turn adherence of the code
to MISRA C Guidelines (1998) was
required, these shall serve as a non-
comprehensive example. Some of the
rules that made using pre-existing code
impractical and lead to a new coding effort
were:

• Type casting from any type to or
from pointers shall not be used

This rule was relaxed in MISRA-C-2004
but the original version meant that a
generic table-based CANopen object
dictionary implementation could not
feasibly be adapted to pass that particular
check.

• The continue and break statements
shall not be used

31 16 15 0

Additional Information Error Code

iCC 2012 CAN in Automation

13-11

These requirements would mean plenty of
changes for code that uses those
statements, along with significant
additional testing.

• All if…else if constructs shall be
terminated with an else clause

This rule is relatively easy to comply with,
but can mean a lot of additional “empty”
code that also has to be documented.

There are many additional rules in this
specific framework that all lead to safer
and better maintainable code but may be
at odds with pre-existing solutions.

Conclusion

The construction of a bootloader differs
significantly from a regular application. It
has limited but unique functionality
together with constraints in the use of
interrupts and code space. This, along
with the application of safe coding
standards, calls for a dedicated bootloader
implementation to ensure maximum
operational security and minimize the risk
of unrecoverable failures of devices in
hard- or impossible-to-reach areas.

References

CiA 301 V4.2.0 – CANopen application
layer and communication profile

CiA 302-3 DSP V4.1.0: CANopen
additional application layer functions Part
3: Configuration and program download

The Motor Industry Software Reliability
Association (MISRA): Guidelines For The
Use Of The C Language In Vehicle Based
Software, Version 1.0, July 1998

MISRA-C:2004: Guidelines for the use of
the C language in critical systems,
October 2004

Christian Keydel
Embedded Systems Academy, Inc.
1250 Oakmead Parkway, Suite 210
Sunnyvale, CA 94085, USA
phone +1 (877) 812-6393
fax +1 (877) 812-6382
ckeydel@esacademy.com
www.esacademy.com

