
iCC 2005 CAN in Automation

08-1

A socket-based interface to CAN

Ivan Cibrario Bertolotti, Gianluca Cena and Adriano Valenzano, IEIIT-CNR

This paper aims at defining an interface for the CAN data-link layer that both fits in well
with the IEEE Std 1003.1 socket paradigm, and allows the user to access the full range
of capabilities implemented by CAN interface controllers. At the same time, this paper
also attempts to set up a set of specifications and guidelines for the actual implemen-
tation of the proposed interface.

1. Introduction

This paper aims at defining a process-
level interface for the transfer of data at
the data-link level among CAN nodes that
fits in well with the well-known and under-
stood socket paradigm, as specified by the
IEEE Std 1003.1 [1]. At the same time it
allows the user to access a range of capa-
bilities usually implemented by modern off-
the-shelf CAN controllers – such as, for
example, hardware-assisted filtering and
autonomous response to RTR frames –
that are not usually available in other kinds
of network interfaces and are not ac-
counted for in the traditional socket para-
digm.

This paper also gives a set of specifica-
tions and guidelines for the actual imple-
mentation of the proposed interface in the
framework of the socket implementation
found in the Berkeley 4.4BSD operating
system. We believe that these specifica-
tions can readily be applied with few
modifications to a wide range of other
operating systems, because the Berkeley
code base was used as the starting point
for many other socket implementations in
use nowadays, both open-source and pro-
prietary. The above interface can be easily
embedded in those real-time operating
systems for advanced industrial and em-
bedded devices that are built on a micro-
controller.

The paper is organized as follows: Sec-
tions 2 and 3 briefly introduce the main
characteristics of the socket Application
Programming Interface (API) and CAN,
respectively, that will be referred to
throughout the paper. Then, Section 4
describes how the socket API must be
extended to support the transfer of data at
the data-link level among CAN nodes,

whereas Section 5 draws some conclu-
sions.

2. The Socket API

The socket facility, and its application pro-
gramming interface, were initially designed
to enhance the interprocess communica-
tion capabilities of the Berkeley 4.2BSD
operating system [2]. Before that release,
UNIX systems were generally weak in this
area, leading to the offspring of several,
incompatible experimental facilities which
did not enjoy widespread adoption.

The interprocess-communication facility of
4.2BSD was developed with several goals
in mind, the most important of which was
to provide access to communication net-
works, such as the DARPA Internet that
was just born at that time, hence the inter-
process-communication and network-
communication subsystems were tightly
intertwined from the very beginning.

Another important goal was to overcome
many of the limitations of the existing
pipe mechanism, in order to allow multi-
process programs – such as distributed
databases – to be implemented in an effi-
cient and straightforward way. In order to
do this it was necessary, for example, to
enable any pair of processes to commu-
nicate.

In summary, the socket facility was de-
signed to support:

transparency: the communication among
processes should not depend on the
physical location of the communicating
processes (on a single host or on multi-
ple hosts), and should be as much in-
dependent as possible from the com-
munication protocols being used;

efficiency: in order to obtain higher per-
formance, it was decided to layer inter-

iCC 2005 CAN in Automation

08-2

process communication on top of net-
work communication and not vice-
versa;

compatibility: the new communication
facility should not depart significantly
from the traditional standard input and
standard output interface commonly
used by UNIX programs, so that naive
processes using it should still be usable
with no or minimal modifications in a
distributed environment.

In order to use the interprocess-communi-
cation facility, a process must first create
one or more communication endpoints,
known as sockets; this is accomplished
through the invocation of the socket()
function. When doing this, the caller must
pass three arguments, namely:

1. a protocol family identifier, that
uniquely identifies the network commu-
nication domain the socket belongs to
and operates within; for example,
PF_INET identifies the Internet com-
munication domain whereas PF_ISO
identifies the ISO/OSI communication
domain.

2. a socket type identifier, that specifies
which communication model will be
obeyed by the socket. For example, a
socket of type SOCK_STREAM is con-
nection-oriented and supports the or-
derly, reliable delivery of a stream of
data, while a SOCK_DGRAM socket is
connectionless and supports the deliv-
ery of datagrams without any guaran-
tee of order and reliability;

3. a protocol identifier, that selects which
specific protocol stack – among those
suitable for the given protocol family
and socket type – the socket will use.
For example, IPPROTO_TCP selects
the Transmission Control Protocol
(TCP) and IPPROTO_ICMP selects the
Internet Control Message Protocol
(ICMP). Both protocols are defined in
the Internet communication domain, so
they shall be used only with the
PF_INET protocol family.

The communication domain and the socket
type are orthogonal one another, and to-
gether determine a (possibly empty) set of
communication protocols that belong to
the domain and obey the communication
model the socket type calls for; then, the

protocol identifier can be used to narrow
the choice to a specific protocol in the set.

The return value of socket() is a small
integer, known as socket descriptor,
which uniquely represents the socket and
has to be passed to all the other functions
referencing the socket itself. The
semantics of the close() function,
already defined to close a file descriptor,
has been overloaded to also destroy a
socket, given a socket descriptor.

In order to be actively engaged in data re-
ception, a socket must have a unique local
address; the bind() function allows the
caller to associate a specific local address
to a socket, or to let the system choose
one automatically.

The connect() function has two different
semantics for connection-oriented and
connectionless sockets, namely:

• when invoked on a connection-ori-
ented socket, connect() sets out a
connection request directed towards
the destination address specified in the
call;

• when invoked on a connectionless
socket, connect() simply associates
a destination address to the socket it-
self, so that, in the future, it will be pos-
sible to use it with data-transmission
functions which do not indicate explicitly
the destination address, like send();
the same function also limits the
remote sender address for any
subsequent message reception from
the socket.

When invoked on a connection-oriented
socket, listen() marks the socket as
willing to accept connection requests; it
has no meaning for a connectionless
socket.

The accept() functions waits for a
connection request to arrive on a given
socket, accepts the connection and clones
the socket so that the new socket is con-
nected to the originator of the connection
request, and the old one is still available to
wait for further connection requests; then,
it returns to the caller the identifier of the
new socket. It has no meaning for a con-
nectionless socket.

The functions send(), sendto(), and
sendmsg() allow the caller to send

iCC 2005 CAN in Automation

08-3

data through a socket, with different levels
of expressive power and interface complex-
ity. For example, send() lacks the ability
to explicitly specify the destination ad-
dress, which is provided by sendto()
instead. The function sendmsg() is the
most powerful one, and also supports data
gathering as well as the specification of a
set of ancillary data along with the data
transfer request.

Conversely, the functions recv(),
recvfrom() and recvmsg() allow a
process to wait for and retrieve incoming
data from a socket. Like their transmit-
side counterparts, they have different lev-
els of expressive power. The most power-
ful interface, recvmsg() returns to the
caller the transmitter address and the
ancillary data (if any); in addition, it per-
forms data scattering.

The semantics of both sets of functions
can be made non-blocking by setting the
O_NONBLOCK flag in the file descriptor by
means of the fcntl() function.

Last, the functions getsockopt()
and setsockopt() allow the caller to
retrieve and set, respectively, a set of op-
tions supported by either the socket itself
or by each level of the protocol stack as-
sociated with it. Both of them take as ar-
guments a socket identifier, an identifier
that specifies the protocol level at which
the option resides, the name of the option
to get or set, and a buffer used to store or
retrieve the value of the option.

3. CAN Data-link Protocol and Services

The most important, user-visible differ-
ence between CAN and the other kinds
of network the socket interface was tradi-
tionally focused on, is the adoption of a
message-oriented (instead of node-ori-
ented) addressing scheme at the data-link
level. Roughly speaking, in a message-
oriented addressing scheme, a data-link
message does not convey any explicit indi-
cation of the identity of its originating and
target nodes – that is, the so-called source
and destination addresses.

Instead, the contents of the message itself
are tagged with a unique message identifier
and the broadcasting capability of the
communication media is leveraged to

transmit the message to all nodes in the
network; at this point, each node checks
the identifier of the received message
against one or more filters to determine
whether it is interested in the message
itself or not (and, consequently, to either
process it further or discard it).

CAN data-link services [3] provide for real-
time data transfer among CAN nodes.
They are modelled after a pro-
ducer/consumer relationship and are im-
plemented with minimal protocol overhead.
There are two different methods for data
transfer, and each of them is implemented
by means of its own protocol:

• the method based on data frame trans-
fer adheres to the push model and is
unconfirmed. According to this method,
the producer simply sends the data in a
CAN data frame and each consumer is
notified of its reception.

• the method based on remote frames
operates according to the pull model
and is somehow confirmed. It allows a
consumer to initiate the transmission
of the data it is interested in by sending
a remote frame on the CAN bus. The
producer replies with the related CAN
data frame and all consumers are noti-
fied of its reception.

4. CAN-specific Extensions to the Socket
API

4.1 Addressing scheme

The socket API makes a clear-cut distinc-
tion between the source and target ad-
dress of a message and its design was
oriented towards unicast communication;
broadcasting and multicasting are sup-
ported as well, with broadcast and multi-
cast addresses being handled as a special
form of destination address, but none of
these features is either assumed or re-
quired at the data-link level.

Instead, as pointed out in Section 3, the
CAN data-link protocol has a very different
addressing scheme, which is based on
message identifiers and heavily relies on
the broadcasting capabilities of the com-
munication media. Hence, when dealing
with data-link-level protocols, the
distinction between the source and target
address of a message is moot on CAN.

iCC 2005 CAN in Automation

08-4

Accordingly, the semantics of all socket
functions dealing with the source and
target address of a message has been
changed to deal with its message identifier
in this case. However, we believe that this
twist does not lead to any confusion,
because the intended meaning of those
functions to the programmer is preserved.

4.2 Data-link Services and Protocol Family

In order to support the CAN data-link ser-
vices we need to specify both a new pro-
tocol family identifier and a new address
family, along with the address structure
associated with it. In particular:

• the symbolic protocol family identifier
PF_CANDL identifies the set of proto-
cols for data transfer at the data-link
level on a CAN network, and can be
used in an invocation of socket() to
signify that the socket to be created
belongs to the CAN communication
domain for data-link data transfer;

• the symbolic address family identifier
AF_CANDL identifies the addressing
mode used by the CAN data-link layer
and can be used, for example, in an
invocation of sendto() on a socket
belonging to the PF_CANDL domain.
Accordingly, the corresponding address
template structure shown in Figure 1
represents all possible ways of ad-
dressing a communication endpoint for
data transfer at the data-link level in
CAN.

Referring to Figure 1, the portion of ad-
dress specific to CAN (i.e., the
scandl_data field) is by itself a structure
that holds the various component of the
address.

Figure 1: The AF_CANDL address template

Flag Description

SCANDL_F_EXT The message identifier and its
mask (if any) are in extended
(29-bit) rather than standard
(11-bit) format.

SCANDL_F_MASK The message identifier
mask of the address struc-
ture has valid contents; set-
ting this flags also requests
incoming message filtering to
be performed on the corre-
sponding socket.

SCANDL_F_DLC The DLC field of the address
structure has valid contents;
setting this flags also acti-
vates the check of outgoing
message lengths against the
specified DLC for consis-
tency, and enables the
transmission of maximum-
size data frames with a DLC
greater than 8.

SCANDL_F_DEFER Do not send the output data
frame immediately.

SCANDL_F_ONRTR Enable automatic transmis-
sion of the data frame in re-
sponse to an incoming remote
frame with the same message
identifier.

Table 1: Valid flags in AF_CANDL

This hierarchical way of specifying an ad-
dress type proves to be very useful to ac-
commodate a wide range of address types
in the socket paradigm while, at the same
time, minimizing the amount of knowledge
that the upper-level portions of the socket
implementation must have on the internal
structure of addresses belonging to the
same family. The components of an
AF_CANDL address are:

scandl_flags: holds a set of flags that
specify what parts of the address are
valid, and how they shall be interpreted;
moreover, some flags provide for alter-
nate, nonstandard semantics of send
operations and will be described in
more detail in Section 4.5. Table 1 lists
the allowed flags and summarizes their
meaning.

scandl_ifnum: contains a positive in-
terface number, used to distinguish
between multiple CAN interfaces con-
nected to the same node; the special
value zero denotes the default CAN in-
terface.

n + 2 … …

AF_CANDL …16

sa_len
1 byte

sa_family
1 byte

sa_data
n bytes

General
structure

scandl_len
1 byte

scandl_family
1 byte

…

scandl_flags
1 byte

scandl_ifnum
1 byte

scandl_mb
1 byte

… … … … …

scandl_dlc
1 byte

scandl_id
4 bytes

scandl_mask
4 bytes

res

AF_CANDL
structurescandl_data

14 bytes

2 bytes

iCC 2005 CAN in Automation

08-5

scandl_mb: contains a positive integer
that represents a message buffer on
the CAN interface and enables the user
to exercise a finer control on the inter-
face-level resources that are allocated
to the socket; the special value zero
leaves this burden to the interface
driver.

scandl_dlc: this field is valid only if
flag SCANDL_F_DLC is set, and con-
tains the Data Length Code (DLC) to
be used for outgoing data frames. Its
presence has two purposes: first, it al-
lows the socket implementation to
check the actual length of outgoing
messages for consistency when their
expected length is fixed and known in
advance; moreover, by specifying a
value greater than 8 here, the user is
enabled to send data frames with a
payload of 8 bytes but a DLC in the
range from 9 to 15, a possibility explic-
itly allowed by the most recent version
of the CAN specifications [3]. If not
specified, the DLC is calculated by the
socket implementation on a frame-by-
frame basis from the data length.

scandl_id: contains either a standard
(11 bit) or an extended (29-bit) CAN
message identifier, depending on the
setting of flag SCANDL_F_EXT. In both
cases, the identifier must be left-
aligned, so as to place the most signifi-
cant bit of the identifier into the most
significant bit of the field; in this way,
the mutual alignment between standard
and extended identifiers will conform
with their arbitration weight.

scandl_mask: holds a mask to be ap-
plied to the message identifier to
perform incoming message filtering; it
is valid only if flag SCANDL_F_MASK is
set.

The socket interface allows an address to
be underspecified under several circum-
stances, by leaving one or more of its
components unspecified; for example, in
the TCP/IP address family, either the IP
address or the TCP port number can be
left unspecified when binding a socket, with
the result of asking the system to use the
default IP address of the host, and to allo-
cate a fresh TCP port number.

Identifier Description

CANPROTO_DATA Plain, bidirectional data trans-
fer.

CANPROTO_RAW Raw access to CAN interface.

Table 2: Valid protocol identifiers for the
PF_CANDL communication domain

Another possible use of underspecified
addresses is the definition of an input filter,
to be further described in Section 4.4: in
the AF_CANDL address family, a set of bits
in the message identifier can be marked
as "don't care" by specifying an additional
bit-mask in the address structure. The
mask has one bit for each message iden-
tifier bit; the mask bit can be either one
or zero to denote that the corresponding
bit of the message identifier should or
should not be taken into account, respec-
tively, when matching incoming messages
to sockets.

4.3 Protocol Identifiers

When creating a socket, it is possible to
specify a protocol identifier, to explicitly
indicate which protocol stack must be used
with the new socket. In the Internet com-
munication domain, this argument is often
left unspecified, because there are only
few valid protocol stacks available and the
combination of the communication domain
and socket type passed to the socket()
function is restrictive enough to uniquely
select one of them.

In the CAN communication domain all
data-link protocols for data transfer are
based on the concept of datagram, hence
the socket type is always set to
SOCK_DGRAM and is not of any help in lo-
cating an appropriate protocol stack for the
socket.

As a consequence, the protocol identifier
must be actively used to select the right
protocol for the socket; Table 2 lists the
new protocol identifiers we defined.

4.4 Plain Data Transfer Protocol

This is the simplest service foreseen by
the CAN data-link level, and supports the
bidirectional exchange of data and remote
frames among CAN nodes; except for the

iCC 2005 CAN in Automation

08-6

severe constraints on the payload size, its
behaviour resembles the other datagram-
based protocols such as, for example, the
UDP protocol in the Internet domain.

In order to use this service, both the
communicating agents should create a
new communication endpoint by means of
the socket() function, and select the
CANPROTO_DATA protocol. This function
merely creates the socket, but does not
allocate any interface-level resource to it,
because those resources are often in
scarce supply.

Then, a successful invocation of bind()
by the consumer assigns a message iden-
tifier and possibly (if flag CANDL_F_MASK
is set in the address structure) an input
filter to the socket, and enables the recep-
tion of messages that either match the
given message identifier or satisfy the
input filter. These actions may, and usu-
ally do, require the allocation of interface-
level resources such as, for example, a
message buffer in the CAN controller.

After a successful bind() , the consumer
can wait for the arrival of a data frame on
a socket by means of the usual recv(),
recvfrom() or recvmsg() functions.
The last two functions also return the ac-
tual identifier of the received message; this
information may be useful if the socket has
an input filter.

To send data, the producer can use ei-
ther the sendto() or sendmsg() func-
tions; both of them allow the caller to ex-
plicitly indicate the message identifier to
be used for the outgoing data frame.
Those functions should allocate temporar-
ily the interface-level resources needed for
transmission, request the transmission and
then wait until either a positive acknowl-
edge is received from the CAN bus or a
transmission error occurs. At this point,
they release any interface-level resource
they allocated and return to the caller.

According to the socket API, both sets of
functions can be made non-blocking by
setting the O_NONBLOCK flag in the file
descriptor by means of the fcntl() func-
tion, and this capability has been main-
tained in the CAN communication domain.
Furthermore, the select() and
poll() functions allow the caller to
perform polling and timed waits on a set of

sockets to implement, for example, syn-
chronous I/O multiplexing by a single
agent.

As an optional step, the producer can as-
sociate permanently a message identifier
to be used for data transmission and per-
manently allocate the interface-level re-
sources needed for transmission to a
socket by means of connect(), thus
choosing a different tradeoff between effi-
ciency of transmission and resource con-
sumption. After a successful connect(),
send() can be used for data transmis-
sion, too, because the message identifier
of the outgoing message can thereafter be
determined implicitly.

In order to solicit the transmission of data
it is waiting for, and carrying the message
identifier specified in the bind() function,
the consumer can also transmit a remote
frame by invoking send() with a dummy
data buffer and the MSG_OOB flag set; the
data are then received as before.

The MSG_OOB flag was chosen because of
the loose analogy between a remote
transmit request and out-of-band data
transmission (otherwise unused in the
CAN communication domain). The same
flag can also be used in conjunction
with sendto() and sendmsg() but, if
the message identifier passed to those
functions is not the same as the identifier
passed to bind(), some implementations
may rebind the socket to the new identi-
fier.

Figure 2: Socket setup and data exchange with
the plain data transfer protocol

bind()

socket()

connect()

send()

identifier

errorcode

close()

Socket interface CAN CAN Socket interface

errorcode

errorcode

create socket

allocate perm.
tx. res.; set
default tx.
address

Producer Network Consumer(s)

get tx. res.,
if required;
send data
frame

release res.;
destroy socket

data frame

can be
repeated n

times

socket()
create socket

identifier

get rx. res.
and set input
filters;
enable rx.

errorcode

recv()
wait for a
data frame
matching the
input filter

demux data
frame with
input masks;
if it matches

process
data

close()

errorcode

optional step

release res.;
destroy socket

iCC 2005 CAN in Automation

08-7

Any agent can destroy a socket by means
of close(), with the side effect of re-
leasing any interface-level resource allo-
cated to it as soon as possible.

It should be noted that, due to the inherent
symmetry of this protocol, a single socket
can be used to send and receive data, as
is commonly done for other datagram-
based protocol, such as UDP; therefore, a
single agent can act as both a producer
and a consumer at the same time.

Figure 2 shows an example of socket
setup and data transfer using this protocol,
assuming that the data transmission func-
tions are blocking (their default behav-
iour), and that no error occurs.

4.5 Raw Access to the CAN Interface

In order to support a more fine-grained
control on the allocation of interface-level
resources, like CAN message buffers, and
a one-to-one mapping between sockets
and such resources, the protocol
CANPROTO_RAW allows the user to access
the CAN interface in a more direct way.

As for the plain data transfer, all communi-
cating agents should create a new com-
munication endpoint by means of the
socket() function. Then, a successful
invocation of either connect() or
bind(), performed by each producer
and consumer, respectively, assigns a data
transfer direction to the socket and allo-
cates any interface-level resource needed
by the socket itself. Unlike the
CANPROTO_DATA protocol described in
Section 4.4, a single agent can alternate
between the producer and consumer roles,
but cannot act as both simultaneously.

For consumers, bind() enables the re-
ception of data frames matching the input
filter, if any; on the other hand, it is not
possible to enable the automatic response
to remote frames on the producer side as
soon as the producer invokes
connect(), because the response data
have not been set yet.

After a successful bind() each con-
sumer can transmit a remote frame (car-
rying the identifier specified in the bind()
call) by invoking send() with the
MSG_OOB flag set; the data buffer argu-
ment will be ignored in this case.

The send() function returns when either
the successful transmission of the remote
frame has been acknowledged by the
CAN controller, or an error has occurred.
It should be noted that this step is op-
tional, because a consumer can choose to
passively wait for the arrival of a data
frame, instead of actively solicit its trans-
mission.

Like before, the consumer can also use
sendto() or sendmsg() instead of
send() to send a remote frame but, in
this case, the socket could be rebound as
a side effect.

To wait for the arrival of a data frame any
consumer can invoke recv(). This func-
tion waits for the arrival of a data frame
that holds the identifier assigned to the
socket, and returns any data it contains to
the caller.

On the producer side, the response to re-
mote frames can often be carried out auto-
matically by a hardware-assisted mecha-
nism implemented at the CAN interface
level with no or minimal software interven-
tion. The only action the producer must
perform is to set up the contents of the data
frame to be sent back, and this can readily
be accomplished by means of send(),
sendto() or sendmsg().

Figure 3: Socket setup and data exchange
using remote transmission requests

bind()

socket()

connect()a

send()

identifier

errorcode

close()

Socket interface CAN CAN Socket interface

errorcode

errorcode

create socket

allocate perm.
tx. res.; set
default tx.
address

Producer Network Consumer(s)

send data
frame

release res.;
destroy socket

data frame

can be
repeated n

times

socket()
create socket

identifier

get rx. res.
and set input
filters;
enable rx.

errorcode

recv()
wait for rtr
response

pass data to
the caller

process
data

close()

errorcode

send()b

errorcode

prepare tx.
buffer with
user data;
enable rtr rx.

recv()b

rtr frame

send rtr,
wait for ack.

sync. with
incoming rtr

errorcode

release res.;
destroy socket

a with CANDL_F_ONRTR and CANDL_F_DEFER flags set in the address structure
b with MSG_OOB flag set in the flags argument

iCC 2005 CAN in Automation

08-8

On the other hand, the producer has two
more choices, namely:

• to transmit data once, unconditionally,
and then not to react to the reception
of remote frames, like in the transfer of
data frames;

• to transmit data once, unconditionally,
and then keep the same data to be
transmitted again, when a remote
frame will be received for them.

Therefore, in this case, the behaviour of
s e n d () is controlled by the flags
CANDL_F_DEFER and CANDL_F_ONRTR
located in the address structure passed to
connect(); instead, sendto() and
sendmsg() can be controlled on a
frame-by-frame basis since they have an
address structure as a parameter. Table 1
summarizes the allowed flag settings.

In any case, the first successful invoca-
tion of send() (or sendto()) with the
CANDL_F_ONRTR flag set enables the re-
ception of remote transmission requests
related to the message identifier assigned
to the socket, while any subsequent invo-
cation with the flag still set merely
changes the payload; the reception can
be disabled by performing a send() with
the flag CANDL_F_ONRTR reset (and the
flag CANDL_F_DEFER set).

Optionally, the producer can also synchro-
nize with remote frame reception and
answerback, by means of the recv()
function, invoked with the MSG_OOB flag
set; this function does not return any useful
information in the data buffer, but waits for
the arrival of a remote frame and for the
subsequent (automatic) response; then, it
reports the outcome of the transmission to
the caller. By this mechanism, the pro-
ducer can gain an idea of how many re-
mote frames were received and when.

The send and receive steps outlined
above can be repeated as many times as
appropriate. At end, the function
close() should be used to close the
sockets and release any resource associ-
ated to them.

Figure 3 shows an example of socket
setup and data transfer (triggered by a
remote frame) using this protocol, assum-
ing that no error occurs.

5. Conclusions

The socket interface is currently the de
facto standard for accessing communica-
tion services in both internet and intranet
distributed environments.

In this paper it has been shown how this
scheme can be easily adopted – with
proper extensions – also for the industrial
and embedded systems that rely on the
CAN protocol for communication.

Despite being able to model all the func-
tionalities and aspects peculiar to the
communication over a CAN network in a
proper way, this interface achieves effi-
cient and streamlined implementations.

References

[1] IEEE Std 1003.1-2001. The Open
Group Base Specifications Issue 6, The
IEEE and The Open Group, 2001.

[2] Marshall Kirk McKusick et al., Internal
structure of the 4.4BSD operating system,
Addison-Wesley Longman, 1996.

[3] ISO 11898-1, Road vehicles –
Controller area network – Part 1: Data link
layer and physical signalling, International
Standard Organisation, 2003.

Ivan Cibrario Bertolotti
IEIIT-CNR
C.so Duca degli Abruzzi, 24
10129 Torino - Italy
Phone: +39 011 564 5426
Fax: +39 011 564 5429
E-mail: ivan.cibrario@polito.it
Web: http://is.ieiit.polito.it/staff/cibrario

Gianluca Cena
IEIIT-CNR
C.so Duca degli Abruzzi, 24
10129 Torino - Italy
Phone: +39 011 564 5424
Fax: +39 011 564 5429
E-mail: gianluca.cena@polito.it
Web: http://is.ieiit.polito.it/staff/cena

Adriano Valenzano
IEIIT-CNR
C.so Duca degli Abruzzi, 24
10129 Torino - Italy
Phone: +39 011 564 5410
Fax: +39 011 564 5429
E-mail: adriano.valenzano@polito.it
Web: http://is.ieiit.polito.it/staff/valenzano

