
High Level Performance Simulation of a
quadruple CAN Gateway

Florian Bogenberger, Ulf Warschat

ABSTRACT

This paper shows methodologies used to develop a high level simulation model of a qua-
druple CAN gateway. The project was done in tight cooperation between Audi and Motor-
ola. The gateway model was integrated and simulated in the complete automotive network
architecture together with models of all ECUs. Different simulation scenarios were run in
order to measure CPU load, CAN bus load, message latencies in the gateway, memory
requirements, etc. The modeling approach is described and illustrated with practical
examples of the project. It is shown which results can be achieved, what there quality is
and how they can contribute to the system development process. This paper shows and
correlates practical experience of virtual prototyping with expectations frequently out-
lined in theoretical proposals.
1. Introduction
Many features of a today’s car are con-

trolled by distributed systems with compo-
nents communicating via different busses.
One of the most commonly used is the CAN
protocol. For different applications in the car
different networks have been growing over
time. With increasing features in the car there
is a growing need for gateways connecting
these major networks. There is a significant
dependence of the overall system on a stable
and reliable gateway implementation. This
paper describes a study done in close cooper-
ation between Audi and Motorola on a quadru-
ple CAN gateway.

2. The Application
The target application is a central automo-

tive gateway which links the following net-
works:

• Body
• Powertrain
• Infotainment
• Dashboard
• Diagnostic

The following section describes some
characteristics and differences between the
networks.

2.1. Characteristics of the Networks

The body network contains things like door
modules, seat control, sliding roof, etc. This
network may connect many ECUs (Electronic
Control Units) and a lot of the information they
exchange is event-based. The data traffic is
medium, so a data rate up to 125kBit (low
speed CAN [6]) is usually sufficient. As the
data traffic depends a lot on the activity of the
passengers, the actual communication load
can vary in wide boundaries above 50%.

In contrast to that the powertrain commu-
nication is quite stable. Due to real-time
requirements in this area there is large
amount of state-based communication with
messages sent repetitively in short periods.
These periods are calculated to serve the fast-
est possible reaction time. As a dominating
number of messages is transmitted all the
time, the data rate remains relatively constant.

So overload situations are prevented which
could delay important messages. Due to that
approach powertrain usually uses high-speed
CAN[7].

Again a completely different area is info-
tainment. This area is evolving quickly and will
certainly undergo big changes in the future. It
includes things like CD and radio control,
telematics, navigation, etc. Data transmitted in
this network comprise event-based control
information, but also graphic data, video and
audio data. So at least in high-end cars large
amounts of data will be transmitted, certainly
exceeding the capabilities of CAN. Many car-
makers are in favor of the MOST (Media Ori-
ented Systems Transport) bus [5], an optical
bus with a data rate up to 22.5 MBit/s. Never-
theless this network is not completely self con-
tained and requires a connection to other
networks. For example navigation needs
wheel speed data from the powertrain net-
work. More and more data go from infotain-
ment into other networks, e.g. for applications
like predictive navigation or adaptive light con-
trol. This is where the gateway comes into the
game. Moreover for low-cost cars a MOST
solution might be too expensive, so CAN could
be used to carry control information.

The remaining two connection points,
dashboard and diagnostic, are not necessarily
multi-node networks but more or less point-to-
point connections to the gateway. However
both require communicate with all other net-
works. The dashboard displays all kind of sys-
tem information, so it is primarily a data sink.

Diagnostic has traditionally been done via
K-line, but with the new ISO15765 standard
diagnostic will be done via CAN. Every ECU
built in the car must be somehow reachable,
so the gateway is an ideal entry point. Please
note that diagnosis must work during normal
operation of the car, so additional data traffic
comes to the normal communication. Obvi-
ously this constitutes a worst-case condition
for the gateway load.

2.2. Possible Architectures

Even though the networks surrounding the
gateway were clear at the beginning of the
project, there were some options on how to
connect them. A star topology is a obvious
solution, but it is not necessarily the best one.
The following options were discussed at the
beginning of the project:
• Is a separate connection required for the

dashboard, or can it be plugged to the
body, infotainment or powertrain network?

• If the dashboard requires a separate com-
munication line, what is the best protocol -
CAN, SCI, SPI, IIC or a customized parallel
connection (all of which can be used for a
point-to-point connection)?

• Is a dedicated connection required for diag-
nostic or can it be plugged to any of the
existing networks?

2.3. Event-based versus State-based

Depending on their content messages can
be classified in state-based and event-based.
A state-based message says “the current
state is abc”. The message contents does not
change as long as the state remains the
same. An event-based message says “now
the state changed to xyz”. Obviously the later
can only be transmitted when the state actu-
ally changes, whereas the first one can be
repeated over and over. Actually this is a
major difference, where both approaches have
advantages and disadvantages. Event-based
messages allow to detect the time of the state
change more accurately and the data traffic is
kept low unless there are many state changes.
State-based messages are safer in case mes-
sages are lost, but the data rate is usually
quite high because it must fulfill the shortest
reaction time requirement. On the other hand
the data traffic is constant, so that reaction
times can be guaranteed independent on the
system’s state.

Of course a mixture of both types is possi-
ble. Whereas state-based are preferred in the
powertrain environment, event-based is domi-
nating the body environment.

2.4. Message Types

Apart from the classification mentioned
above the following message types have to be
supported:
• cyclic messages: This is the simplest type -

the message is sent periodically with a
fixed period. Please note that even when a
state change happens in the middle of the
cycle period, no new message is transmit-
ted.

• immediate messages: Data of this type is
so important that it is not possible to wait
for completion of the message cycle -
instead it is transmitted immediately. Con-
sequently it has to be processed as fast as
possible by the gateway

• BAF messages: Data that is transmitted
only under certain conditions, e.g. if some-
body opens a window. If that condition is
fulfilled, the message is sent repetitively
with a fixed transmission period. After the
condition has become false, it is repeated
for several times and then transmission is
stopped.

• TP (Transport Protocol) channel messages:
The CAN protocol restricts the number of
data bytes in one message to a maximum
of eight. For data blocks exceeding this limit
the transportation layer generates a bundle
of CAN messages each containing up to
eight data bytes. Messages of such a bun-
dle are transmitted right following each
other with a a short cycle period. Another
characteristic is that the transmitter and
receiver node negotiate an appropriate
CAN identifier, which leads to a large num-
ber of valid CAN identifiers.

• diagnostic messages: Transmitted only in
diagnostic mode - please note that these
messages can additionally be either cyclic
or TP channel

2.5. Message Operations

The major task for the gateway is to for-
ward information from one network to another
one. The simplest operation is to route mes-
sages without further processing them. In

most cases, though, this is not sufficient:

• all messages received by the gateway have
to be checked for a valid CAN identifier.
Many invalid messages are already filtered
out by the CAN controller’s filters (see 4.1),
but an additional software check is per-
formed for every message passing the fil-
ters.

• the importance of messages is different in
different networks - to accomodate this the
gateway can assign new CAN identifiers

• periodic transmission of state-messages -
this must be done in a way that (temporal)
CAN bus overloading is prevented (see 4.2)

• for state-messages adjust different trans-
mission periods in different networks, e.g.
messages transmitted with a 7ms period in
powertrain could have 100ms period in
body.

• check timeout conditions for messages to
be transmitted - either set a data bit indicat-
ing this condition or restrain the message.
This is important for state-based messages
repetitively transmitted by the gateway to
indicate that the updating source message
was not received in time and therefore data
may be out-of-date.

• compose new messages from several
source messages - this includes moving
and assembling bit- and byte fields. Fur-
thermore a composed message might be
locked (prevented from transmission) until
all fields have been updated with new data

• dynamically allocate and manage buffers
for TP channel messages. As the gateway
does not have substantial memory to buffer
large quantities of data, the goal is always
to forward messages as fast as possible.
However sometimes the target network is
temporarily overload. Especially TP chan-
nel messages are likely to suffer from sig-
nificant throughput problems in such a
situation, so they must be buffered. The
large number of possible TP channels do
not allow to reserve fixed buffers upfront,
therefore an efficient, dynamic memory
management is required.

• dynamic routing for TP channel messages -
in contrast to other messages these do not
have an a priori target network - instead it
must be deducted from the transport proto-
col

Please note that this is only an excerpt of
the most important operations that dominate
the gateways performance.

2.6. Gateway Requirements

The gateway has to perform all operations
mentioned above in a timely manner. Espe-
cially immediate message must be processed
with highest priority - ideally they pass the
gateway in less than a millisecond.

Moreover no messages may be lost (e.g.
due to temporarily blocked interrupts). Please
note, however, that this is inevitable if the tar-
get network is overloaded for too long
because the gateway has a limited buffer
capacity. Higher levels of the transport proto-
col can compensate in this case.

The gateway must transmit a large number
of messages with fixed but different periods.
Special care must be taken not to cause tem-
porary overload situations by trying to transmit
a bunch of messages at the same time (see
4.2).

3. Simulating the System

3.1. General

The described application was modeled as
Virtual Prototype with an event-driven simula-
tor. For simulating the CAN protocol we used a
methodology presented at ICC’98 for accurate
simulation on message level [2]. ECU’s were
modeled as abstract message generators,
which transmit messages with real CAN identi-
fiers and number of data bytes in realistic
repetiton rate. They do receive messages and
obey the CAN protocol, but do not process the
data they receive. Parameters control jitter and
pseudo random processes (e.g. to trigger BAF
messages). The gateway hard- and software
was implemented as mixture of graphic mod-

els (using the simulators predefined blocks)
and dedicated C++ modules that were linked
into the simulator.

The ECU models constitute kind of a
responsive environment for the gateway
model. Please note that it would not have
been possible to record and playback CAN
messages of existing systems as messages
coming from the gateway compete with those
coming from ECUs.

3.2. Simulation Parameters

Many characteristics of the simulation can
be controlled by global parameters in order to
emulate best- and worst-case conditions for
the system. The most important parameters
are:

BAF_probability: Likelyness that a BAF func-
tions becomes active in one message
cycle. In the simulation every cycle a ran-
dom generator is triggered giving a ‘yes’ or
‘no’ to activate a BAF-message.

jitter_factor: Controls how accurate the mes-
sage cycle is simulated. In reality the cycle
time of periodic messages is never exactly
identical with the specified value but varies
continuously. This phenomena is con-
trolled by this factor and immitated using a
random function.

immediate_factor: For each node that trans-
mits immediate messages transmission
events are triggered with a random period.

diagnostic_mode: disable or enable diagnostic
messages

clock_frequency: frequency of the CPU clock

transportation_msg_period: Controls the time
span between two consecutive TP channel
messages.

global_seed: seed for all random functions in
the simulator - this is important to guaran-
tee for 100% reproducibility of simulations.

Playing with these parameter almost every
system condition can be immitated.

4. Additional Tools

4.1. CAN Filter Optimization

Most CAN controllers provide filters, that
can be programmed to match a certain set of
identifiers. Whenever the controller receives a
CAN message it checks its identifier. In case it
does not match the message is discarded.
This prevents the CPU from wasting time to
sort out these messages. For the gateway
application there are messages in each net-
work that are not forwarded to any other net-
work. There is not need for the gateway to
process these, so they should be filtered out.

Ideally filters can be programmed in a way that
only messages to be processed by the gate-
way pass. How filtering works in most CAN
controllers is that for each identifier bit it can
be defined if it should recessive, dominant or
any value (don’t care). Having a limited num-
ber of these filters, it is quite difficult to pro-
gram them in the ideal way. Practically this
optimzation problem is quite difficult to be
solved manually.

Therefore Motorola has developed a tool
that performs this task. It takes two lists of
CAN identifiers, those that should pass the fil
and those that should not, and generates an
optimized filter set for it. Originally this tool
was developed only for the gateway project,
but due its general usabil-
ity it is now available as
standalone tool for general
filter optimization for the
MSCAN controller.

Please note a FullCAN
controller is not necessar-
ily a way around the filter
optimization problem. Full-
CAN controllers provide a
set of buffers, each of
which is reserved for a
specific CAN identifier.
Nevertheless for the gate-
way application the num-

ber of CAN identifiers is quite big, which
requires a lot of memory in the controller.

4.2. A Priori Transmission Schedule

The gateway has to transmit a lot of state-
based messages in a periodical manner. The
duration of these periods ranges from a few
milliseconds to seconds. In ECU’s this is real-
ized by programming hardware timers that
trigger interrupt service routines with the
appropriate period. The ad-hoc approach
would be to use the same method for the gate-
way. A high frequency timer interrupt would be
triggered periodically which would then check
each message and transmit it as soon as its
period has been reached (abgelaufen). A
drawback of this approach is that it can hap-
pen that many messages are transmitted at
the same time, which would then lead to a
peak load of the CAN bus. These peak load
situations can significantly impact the system’s
timing behavior, therefore they should be
avoided.

For the gateway application a special tool
was developed, that generates static transmis-
sion schedule in a way that transmission
points are equally distributed. Moreover the
schedule is optimized to avoid accumulations
of high or low priority messages. The result is
a well predictable, constant CAN bus load
through the gateway messages. Even though

Figure 1

there is a certain interferance with messages
coming from ECUs a constant load from the
gateway helps to minimize peak load situa-
tions.

5. Measurements & Results
This section gives a brief overview on the

type of results achieved by simulation. Please
note that example diagrams given here do not
necessarily represent a typical situation.
Instead diagrams are taken from a random
scenario which can be best-case, worst-case
or even completely unrealistic. The intention of
this section is to demonstrate the type and
quality of those results.

5.1. CAN Bus Load

The goal was to measure the CAN bus
load continuously in order to identify peak
loads and their duration. To get an index of the
load the following formula was used:

Obviously this depends on the time span
∆t during which the load is measured (see fig-
ure 1). If this is smaller than the duration of a
normal CAN message, the load-curve will
jump between 1 and 0. For our measurements
we used ∆t=10ms. One message takes about
1ms at a datarate of 125kBit, so a load of 1
means that 10 consecutive message follow
each other. Figure 2 shows an example for a
CAN bus load diagram.

5.2. Filter Efficiency

Under “filter efficiency” we understand the
ratio of suppressed messages to number of all
unwanted messages (which are not pro-
cessed by the gateway) - ideally this is 100%.
The filter efficiency obviously depends on the
number of messages in a network and their
CAN identifiers. Due to the large number of
ECUs in the Body network, the filter efficiency
is lowest. Our results range in the area
between 60-70% suppressed messages of all
unwanted messages. For all other networks
we achieved a suppression ratio of 90-100%.

5.3. Message Latency

On of the most important questions was
how long the CPU takes to process high prior-
ity messages. Figure 3 is showing what the
measurement includes. Please note that the
time spent in the CAN controller is not
included in the measurement, because this is
not affected by the CPU but only by the CAN
bus load. Figure 4 shows an example result.
This diagram shows that the average mes-
sage latency is around 230µs, and maximal
values range at about 1.6ms. We did not
expect variations of this size, and actually
investigations showed, that the reason is not
necessarily an overloaded CPU. Instead this
is a feedback effect from a temporarily highly
loaded target network. In that case it is likely
that CAN messages cannot be transmitted by
the gateway (loosing arbitration), while the fol-
lowup message has already been received
from the source network. The CPU then con-
tinuously tries to process the received mes-
sage, finds that its predecessor has not yet
been transmitted on the target network. As

load t ∆t,()

MessageDuration
t ∆t– TransmStart≤ t<

∑
∆t

---=

Figure 2

Figure 3

these are high priority messages which should
not be handled after normal messages the
CPU gets into kind of a polling mode - which in
turn exceeds the CPU load. The increased
CPU load then affects as well messages with
other target networks. This example shows the
interaction between gateway and the networks
and how it can affect the communication.

6. Summary
The given paper describes a application

with a quadruple CAN gateway, which was
simulated in a realistic environment of ECUs.
The project was done in close cooperation
between Audi and Motorola. The simulation
approach is outlined, together with a descrip-
tion of global parameters used to test the
model in different scenarios. Examples of
measurements and results are given.

7. References
[1] Uwe Kiencke, Dirk John, Sandra
Schneider, “Performance analysis of a distrib-

uted automotive real-time system”, ICC’97
Proceedings, page 07-02
[2] Florian Bogenberger, Carsten Mielenz,
“Accurate Message Level CAN Simulation”,
ICC’98 Proceedings, page 05-08
[3] Jan Krellner, A. J. Pohlmeyer, “Virtual
Prototyping of a fault tolerant CAN physical
layer transceiver”, ICC’98 Proceedings, page
02-02
[4] Simonot-Lion, Y.Q. Song, J. Raymond,
“Validating real-time applications distributed
over CAN: an interoperability verification”,
ICC’97 Proceedings, page 07-09
[5] The Hansen Report on Automotive Elec-
tronics, Vol. 11, No. 5, June 1998, page 1
[6] ISO Standard: Low speed controller area
network (CAN), ISO/DIS 11519-1
[7] ISO Standard: Road vehicles - Inter-
change of digital information - Controller are
network (CAN) for high-speed communication,
ISO/DIS 11898

Florian Bogenberger
Motorola GmbH
Schatzbogen 7
81829 Munich, Germany
Phone: +49-89-92103-421
Fax: +49-89-92103-820
Email: Florian.Bogenberger@motorola.com

Ulf Warschat
Audi AG
D-85045 Ingolstadt
Phone: +49-841-89-89414
Fax: +49-841-89-90483
Email: ulf.warschat@audi.de

Figure 4

	High Level Performance Simulation of a quadruple CAN Gateway
	Florian Bogenberger, Ulf Warschat

	ABSTRACT
	1. Introduction
	2. The Application
	2.1. Characteristics of the Networks
	2.2. Possible Architectures
	2.3. Event-based versus State-based
	2.4. Message Types
	2.5. Message Operations
	2.6. Gateway Requirements
	3. Simulating the System

	3.1. General
	3.2. Simulation Parameters
	BAF_probability:
	jitter_factor:
	immediate_factor:
	diagnostic_mode:
	clock_frequency:
	transportation_msg_period:
	global_seed:
	4. Additional Tools

	4.1. CAN Filter Optimization
	4.2. A Priori Transmission Schedule
	5. Measurements & Results

	5.1. CAN Bus Load
	5.2. Filter Efficiency
	5.3. Message Latency
	6. Summary
	7. References
	[1] Uwe Kiencke, Dirk John, Sandra Schneider, “Performance analysis of a distributed automotive r...
	[2] Florian Bogenberger, Carsten Mielenz, “Accurate Message Level CAN Simulation”, ICC’98 Proceed...
	[3] Jan Krellner, A. J. Pohlmeyer, “Virtual Prototyping of a fault tolerant CAN physical layer tr...
	[4] Simonot-Lion, Y.Q. Song, J. Raymond, “Validating real-time applications distributed over CAN:...
	[5] The Hansen Report on Automotive Electronics, Vol. 11, No. 5, June 1998, page 1
	[6] ISO Standard: Low speed controller area network (CAN), ISO/DIS 11519-1
	[7] ISO Standard: Road vehicles - Interchange of digital information - Controller are network (CA...

