
 1

OPC for CANopen and DeviceNet

Rainer Gallus, Softing GmbH, Haar, Germany

OPC for CANopen and DeviceNet

Abstract

The availability of the Layer 7 Communications CANopen, DeviceNet™ and SDS has
opened opportunities for increasingly complex applications in the CAN application
area. At the same time, the applications are expected to be executable for multiple
operating system environments and a wide range of interface formats. For the
developer of application software, this means that s/he is increasingly confronted with
the task of adapting the application for operation in the new and different
environments over the lifetime of the product.

Therefore, the large demand for standard software and interfaces exists in order to
obtain a general overview on the costs and duration of development.

This article describes which requirements must are to be taken into consideration in
the implementation and how modern APIs (Application Programming Interface) and
new standards such as OPC (OLE for Process Control) can simplify development and
maintenance of CAN applications, thereby reducing the expenses for maintenance and
development considerably.

Introduction

Up to now, CAN was primarily employed
as an OSI Layer 2 implementation in
closed systems. These systems consist of
a network having several CAN nodes and
habitually do not exchange data with other
systems. Typical applications are common,
for example, in the textile industry or
medical technology. In these applications,
company-specific proprietary solutions
developed which could not be rehosted in
another system environment without
related effort.

However, due to the development of
standardized communication protocols
such as CANopen, DeviceNetTM and SDS,
all of which are based on CAN, new
opportunities emerge for the usage of
CAN.

In addition to the fast exchange of process
information representative for CAN, these

standards offer the functionality of a
fieldbus system for integrating and
configuring diverse components of various
manufactures. Since controls such as
PLCs, industrial PCs or standard PCs are
increasingly being applied in these
applications, a strong demand for PC
interfaces exists for interfacing the control
to the CAN network.

The different methods of implementation
are presented below, whereby the affects
of the applied interfaces and associated
software on the project to be implemented
are taken into account.

Program requirements

Before development is initiated, the exact
requirements of the system to be
developed must be defined. These
requirements include, for example:
Transfer rates; network expansion; type of
device to be developed (PLC, industrial
PC; sensor or actuator).

 2

Moreover, the communication protocol
must be defined. A CAN OSI Layer 2,
CANopen, DeviceNetTM or SDS
Communication Protocol can be used for
the communication. In this respect,
selection of the communication protocol
can be determined by a variety of factors
such as: Previously existing devices or
software; hardware performance
capability; target market for the aggregate
system.

Which operating system is to be employed
has a major influence on the development
in the PC sector. Can a standard operating
system such as Windows 95 or Windows
NT be used? Or is a real-time operating
system required? When standard
operating systems are used, pre-written
portations of the communication and driver
software are available. When real-time
operating systems are used, in contrast,
expensive rehosting must still be made
under certain circumstances.

The type of the device applied determines
which interface formats (ISA, PCI,
PCMCIA or PC/104) are supported. When
previously existing device families are
applied, a customer-specific re-design of a
standard interface may be necessary.

If a customer-specific new development is
necessitated, the matching microcontroller
and CAN chips generally have to be
selected, whereby the following must
considered: Microcontroller performance;
availability of corresponding
communication software for these
components; long-term availability of the
selected components.

OSI Layer 7 Communication Protocols for
CAN

In addition to numerous, user-specific
solutions, three high-level, standardized
and application-independent protocols
(CANopen, DeviceNetTM and SDS) are
available for CAN. These high-level
communication protocols correspond to
the three fieldbus layers in the ISO/OSI
model, whereby the following are
implemented: physics; data exchange;
application layer.

Services and objects are defined in the
application layer for running the
communication. These functions defined in
the specification can be implemented by
the user, alone, or assumed from protocol
software already implemented by various
companies. The protocol software is
provided in the scope of delivery along
with the standard interfaces offered or as
source code for rehosting to special
devices.

In order to simplify the use of standardized
devices, the high-level protocols support
so-called device profiles. These device
profiles describe the typical behavior of
device families. This allows the user to use
devices of a device family of various
suppliers without having to undergo
expensive modifications in case of a
change.

CANopen is the further development of
CAL (CAN Application Layer). The device
profiles are specified and defined via the
CAN User Group CiA (CAN in
Automation). CANopen presently focuses
on the European market.

DeviceNetTM was originally developed by
Allen-Bradley. The former is managed and
represented internationally by ODVA
(Open DeviceNetTM Vendor Association).
Even DeviceNetTM disposes of objects
consisting of data (attributes) and services.
Access is made via a hierarchical
addressing scheme. DeviceNetTM has
gained wide acceptance in the USA,
Japan and UK.

SDS (Smart Distribution Systems) was
developed as the third OSI Layer 7
Protocol by Honeywell Micro Switch. SDS
provides a special application layer and
defines an object-oriented, hierarchical
device model. It is specifically employed in
applications utilizing sensors and
actuators; e.g., conveyor belts in airports
and breweries.

Operating systems and driver software

Derivative CAN interfaces and the
complementary APIs and libraries are
available for all standard operating
systems such as DOS, Windows 3.1,

 3

Windows 95, Windows NT as well as
UNIX. Suppliers of the corresponding CAN
technology support the user in applications
involving special operating systems such
as real-time or proprietary operating
systems. Rehosting in the user-specific
operating system environment can be
achieved either by the supplier of the CAN
technology or by users themselves. For
this purpose, the relevant program
sections of the API are provided as source
code, allowing the portation. Qualified
system providers also back the user
extensively and provide the necessary
support.

Fig 1 Schematic of a CAN Interface

Application

Communication
Layer2 / Layer 7

CAN Chip
(integrated or external)

Physical Layer 1
(CAN Standard / ISO 11898)

API (Application Program Interface)

Standard formats available for PC CAN
interfaces

CAN interfaces are offered as both
"intelligent" and "non-intelligent" interfaces.
The difference between these are that
intelligent interfaces exhibit a separate
microcontroller, whereas non-intelligent
interfaces only provide CAN controllers
and transceivers (see Fig. 1).

An intelligent interface uploads the
communication software to the interface.
All time-critical factors associated with the
communication software are executed on
the interface, thereby relieving the PC
considerably. Data is usually transferred
between the interface and the PC via a
dual-port RAM which can be mutually read
and written. Interfaces of these types are
especially suitable for implementing
applications intended for high-speed

networks and processing the complex
Layer 7 Communication (see Fig. 2).

Fig 2 PC Integration with a non-intelligent
 CAN interface

Application

Communication

Layer 2 / Layer 7

CAN Chip

API Application Program InterfacePC

Board

Physical Layer1
(Standard ISO 11898)

In applications involving non-intelligent
interfaces, the communication software is
processed on the PC. Due to the fewer
number of components, these interfaces
are less expensive, but have restrictions in
processing networks having higher data
transfer speeds and larger quantities of
data. Before being applied, however, these
cards must be checked whether suitable
for the proposed application (see Fig. 3).

Fig 3 PC Integration with an intelligent
 CAN interface

PC

Board

Application

Common Memory

Application Program Interface

Communication

CAN-Chip

Physical Layer1

CAN interfaces are offered in all common
formats. ISA and PCI interface formats are
available for use in the PC. PC Cards in

 4

PCMCIA format type II (see Fig. 4) are
specially available for mobile use, together
with tools used in the configuration,
integration, maintenance and service.

Fig 4 PC Card CAN Interface (PCMCIA Type II)

PC/104 is another industry-accepted
interface format. The bus interface of a
PC/104 board behaves similar to the bus
interface of a board having ISA format.
This technology permits extremely small
and compact devices to be implemented.
All standard PC components such as
motherboards, interface cards, etc. are
offered in PC/104 format. Together with
the corresponding CAN interfaces,
extremely powerful CAN stations can be
developed in this technology. These
devices, with their almost cube-like
enclosures, are already applied today in
diverse industrial solutions.

API Application Programming Interface

The CAN Application Programming
Interface, simply API, forms the interface
between the customer application and the
communication software. The API provides
services and interfaces for transferring the
data of the respective communication
software, the API of which represents the
conversion of the specification relating to
the applied communication software. Even
though, however, the different suppliers
refer to the respective standard when
implementing their communication
software, the products offered are always
company-specific solutions; i.e., the call
interface of manufacturer A does not
match that of manufacturer B!

However, it is not self-evident - even within
a product family - that all call interfaces
offered are compatible to one another. In
most of the solutions offered, the API

operates directly with the device drivers
supplied for the respective interface.
Moreover, different APIs are usually
offered for the various operating systems.
It is therefor important that the call
interfaces offered are not only inter-
compatible for the various interface
formats, but also for the different operating
systems.

Some system developers place special
attention on this compatibility under
various API versions in the implementation
and further enhancement of the
communication software, meaning no
unnecessarily high portation expenses
occur when varying the operating system
environment or the CAN interface.

A exemplary 32-bit API implementation is
depicted in Fig. 5. The application (a
CANopen implementation in this case) can
be employed with both Windows 95 and
Windows NT. Which device drivers are
required (device drivers for Windows 95 or
Windows NT) is decided first in a library
below the API, designated Vcard32.dll in
Fig. 4. Another essential aspect is that
hardware-relevant information does not
exist any more in the API.

Hence, long-term assurance is made that
a large number of different interface
formats for various operating systems can
be operated via a single API. This type of
implementation offers the advantage that
the number of program versions which
must be maintained is significantly
reduced.

Reduction of the application program
versions signifies a considerable savings
in cost and time in the continued
development and support of these
products.

OPC - A new standard for visualization and
fieldbus systems

A further development of this concept is
OPC, OLE for Process Control, whose
objective is to achieve a standardized, PC-
internal and computer-wide communication
standard, enabling the interfacing of
manufacturer-neutral programs and the

 5

use of these as components in a complete
system.

Among components, the aim of the open,
vendor-independent communication
between field equipment is continued here
within the PC. Similar to the use of printer
drivers in Windows, devices and/or driver
specifications beyond the OPC interface
are to remain concealed.

Figure 5 Example of a modern CANopen API

Application

CAN.dll

CAN API (Application Program Interface)

CANopen Communication

Windows NT Windows 95

CANopen communication

Vcard32.dll
PC

controlled

C&S

32bit Windows 95Windows NT

Interface

Slot

 CAN interface

device driver

Operating system

DPRAMDPRAM

In this case, clear demarcation of
component manufacturers and software
manufactures occurs (see Fig. 6). The
suppliers of components such as CAN
interfaces need only develop an (OPC)
driver for the respective hardware
component.

Figure 6 Proprietary interfaces versus OPC interfaces

...Application
X

OPC Interface

Application
Y

OPC Interface

CONTROLLERDCSPLC

Application
X

Application
Y...

DCS CONTROLLERPLC

API API

without OPC with OPC

The integration of standards for CAN such
as CANopen, DeviceNetTM and SDS with
OPC leads to solutions compatible and
interoperable to solutions of other OPC
suppliers.

What is concealed behind OPC technology?

As OPC Client, various application
programs such as visualization systems
and process control systems can use the
functionality integrated in the OPC Server
(interface with OPC driver). OPC Clients
and OPC Servers can be executed in a PC
or even distributed in the network over
several PCs. Distribution of the

 6

components among several PCs is backed
by DCOM (Distributed COM), Microsoft's
distributed interaction protocol.

In this case, DCOM utilizes the Ethernet
technology and is a constituent of all new
Windows operating systems for Windows
NT 4.0 or later. An update can be obtained
for Windows 95. The OPC Server enables
process variables to be read and written,
not only variable values can be
transferred, but status and time information
as well. In addition, the OPC Server
features further functionality, enabling both
the OPC Client and the user to differently
combine the process variables to be
captured and to adapt their acquisition to
specific requirements.

Examples of this are the combination of
dynamic variables in a group with common
values in regard to update rate and
threshold value for reporting changes. How
the available technology is applied is
presented below:

OPC is based on the well-known
OLE/COM technology by Microsoft. Two
requirements were the basis for
developing OLE:

1. To be able to process documents
with different information
representations in a program.

2. To ensure binary compatibility between
software components (backward
compatibility, autonomous upgrades,
co-existence of old and new software).

The efforts led to the definition of a
Component Object Module (COM) by
Microsoft in the first half of the decade.
The aim of this model is the guarantee of
binary compatibility between software
components.

Special aspects of this model are
interaction between the components
based on access to methods, components
and objets combined in interfaces. A
Component Object contains several
interfaces which encapsulate access to the
object. Furthermore, the term "Object" is
used as a synonym for the term
"Component Object".

The following are defined in COM:

- A methodology how an object can be
interrogated at runtime to determine
whether it supports a specific interface.

- A procedure how the life cycle of objects
is managed. For his purpose, a reference
counter is used which is incremented the
first time an interface is used and
decremented again when released. If the
counter has the value zero, the object is no
longer required and is able to terminate
itself.

- How interactions between objects can be
executed beyond process limits. This is
necessary because pointers to interfaces
and method parameters are only valid
within a process space.

- Procedure for identifying and loading
objects.

OPC defines two objects:

- Object structure

- Interfaces, methods and parameters for
individual objects.

The term "OPC Server" was used twice in
the definition of the terms. An OPC Sever
denotes an executable file which yields

 7

functionality as determined in the OPC
specification. Parallel to this, an "Object" is
also termed as OPC Server within the
latter.

An OPC Server can contain entities of the
objects: OPCServer (1x); OPCGroup (at
least 1x); OPCItem (at least 1x) (see Fig.
7). In concern to this, an OPC Server
always accesses the object interfaces; i.e.,
in order to properly terminate an OPC
Server, an OPC Client must release all
objects again by calling "Release".

Where can OPC Servers optimally be
applied?

One particular area of application for the
OPC Server is use as a constituent in
visualization systems. Potential use also
exists, however, in process control
systems as well as systems used in
remote maintenance and diagnostics.

The use of the OPC Servers is in its
pioneer phase, meaning that further
applications are certainly still to evolve in
the future.

Summary

CAN and the CAN-based OSI Layer 7
implementations CANopen, DeviceNetTM
and SDS give the user access to powerful
technologies, allowing implementation of
projects in industrial automation.
Moreover, the costs for further
development and maintenance can be
significantly reduced through the selection
of modern CAN interfaces and
corresponding call interfaces.

New technologies such as OPC provide
users with additional opportunities in
ensuring long-term interfacing of their
program systems to many different
applications, thereby eliminating expensive
portations.

OPC is operated by an independent
organization. A large number of companies
which cooperate in the advanced
development and maintenance of OPC are
represented in this organization.
Corresponding committees perform
conformity and interoperability tests and
therefor act as superior inspection
authority.

The main advantages in using OPC are all
that the suppliers of software solutions
(e.g., a visualizations system) still need is
a generic driver, namely an OPC Client

Figure 7 OPC Application

SensorDigital Input

OPC-Server

DCOM via TCP/IP

(PLC,fielddevice

CANopen, DeviceNet

AktuatorDigital Output

Fisher

Visualization
OPC-Client

OPC Item

OPCServer

OPC Client

OPC Group OPC Group

OPC ItemOPC ItemOPC Item

OPC-Server

 8

interface and no longer a large variety of
specific drivers, as in the past.

Hence, system integrators can combine a
desired process visualization with various
PC cards, for which OPC software is
available. The solutions which result are
also network-capable due to the
Distributed COM incorporated by OPC.

Despite all the simplification of the
interfaces in the project design, an
important factor remains which should not
to be overlooked: Training of employees
involved in the project. Training for CAN,
CANopen, DeviceNetTM and SDS and
corresponding OPC interfaces is offered
by various system houses. The training

can be conducted either in-house at the
supplier or remotely at the customer site.

Softing GmbH
Richard-Reitzner-Allee 6
85540 Haar near Munich
Tel: ++49 / 89 / 45656 – 323
Fax: ++49 / 89 / 45656 – 399
Email: rainer.gallus@softing.com
Homepage: http:\\www@softing.com

